Two boundary centralizer algebras for q(n)
نویسندگان
چکیده
We define the degenerate two boundary affine Hecke-Clifford algebra H d , and show it admits a well-defined q ( n ) -linear action on tensor space M ? N V where is natural module for are arbitrary modules Lie superalgebra of Type Q. When irreducible highest weight parameterized by staircase partition single row, respectively, this factors through quotient . then construct explicit quotient, p using combinatorial tools such as shifted tableaux Bratteli graph. These belong to family which we call calibrated. Using relations in also classify specific class calibrated modules. The summands coincide with construction, provide weak version Schur-Weyl type duality.
منابع مشابه
Degenerate two-boundary centralizer algebras
Diagram algebras (e.g. graded braid groups, Hecke algebras, Brauer algebras) arise as tensor power centralizer algebras, algebras of commuting operators for a Lie algebra action on a tensor space. This work explores centralizers of the action of a complex reductive Lie algebra g on tensor space of the form M ⊗ N ⊗ V ⊗k. We define the degenerate two-boundary braid group Gk and show that centrali...
متن کاملMatrix Units for Centralizer Algebras
We compute matrix units for Brauer’s centralizer algebras and Hecke algebras of type A. This can be used to construct a complete system of matrix units of the centralizers of tensor products of classical Lie groups (except S0(2n)) and their quantum deformations. The calculation is done by induction inspired by path models for special operator algebras. It is similar to the calculation of Young’...
متن کاملCharacters of Brauer's Centralizer Algebras
Brauer's centralizer algebras are finite dimensional algebras with a distinguished basis. Each Brauer centralizer algebra contains the group algebra of a symmetric group as a subalgebra and the distinguished basis of the Brauer algebra contains the permutations as a subset. In view of this containment it is desirable to generalize as many known facts concerning the group algebra of the symmetri...
متن کاملComputing the Discriminants of Brauer's Centralizer Algebras
This paper discusses a computational problem arising in the study of the structure theory of Brauer's orthogonal and symplectic centralizer algebras. The problem is to compute the ranks of certain combinatorially defined matrices Zm k(x) (these matrices are presented in §2). This computation is difficult because the sizes of the matrices Zm k(x) are enormous even for small values of m and k . H...
متن کاملMatrices connected with Brauer's centralizer algebras
In a 1989 paper [HW1], Hanlon and Wales showed that the algebra structure of the Brauer Centralizer Algebra A f is completely determined by the ranks of certain combinatorially defined square matrices Z, whose entries are polynomials in the parameter x. We consider a set of matrices M found by Jockusch that have a similar combinatorial description. These new matrices can be obtained from the or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2021
ISSN: ['1090-266X', '0021-8693']
DOI: https://doi.org/10.1016/j.jalgebra.2020.08.028